Solution:
Solution
As we know,
$$ C_p-C_v=R$$
$$\dfrac {C_p}{C_v}-1=\dfrac {R}{C_v}$$
$$C_v=\dfrac {R}{\gamma -1}$$
A: $$\gamma =\dfrac {5}{3}$$
(for monoatomic) $$C_v=\dfrac {R}{\dfrac {5}{3}-1}=\dfrac {3}{2}R$$
B: $$\gamma=\dfrac {7}{5}$$
(for diatomic) $$C_v=\dfrac {R}{\left (\dfrac {7}{5}-1\right )}=\dfrac {5}{2}R$$
assume mixture contains 1 mole of A and n mole of B
So for mixture
$$C_{v_{mix}}=\dfrac {1\times \dfrac {3}{2}R+n\times \dfrac {5}{2}R}{1+n}=\dfrac {(3+5n)R}{2(1+n)}$$
$$ \dfrac {R}{\dfrac {19}{13}-1}=\dfrac {(3+5n)R}{2(1+n)}$$
$$ \dfrac {13}{6}=\dfrac {3+5n}{2(1+n)}$$
$$ n=2$$
So, fraction of B $$=\dfrac {2}{1+2}=\dfrac {2}{3}$$