Solution:
Solution
⇒Fnet = 2Fcosθ
$$\displaystyle{F}_{{{n}{e}{t}}}=\frac{{{2}{k}{q}{\left(\frac{q}{{2}}\right)}}}{{{\left(\sqrt{{{y}^{2}+{a}^{2}}}\right)}^{2}}}\cdot\frac{{{y}}}{{\sqrt{{{y}^{2}+{a}^{2}}}}}$$
$$\displaystyle{F}_{{{n}{e}{t}}}=\frac{{{2}{k}{q}{\left(\frac{q}{{2}}\right)}{y}}}{{{\left({y}^{2}+{a}^{2}\right)}^{{{3}\text{/}{2}}}}}\Rightarrow\frac{{{k}{q}^{2}{y}}}{{{a}^{3}}}$$
So, F∝y