Solution:
Solution
$$I=\dfrac{V}{\sqrt{R^2+(\dfrac{1}{wc})^2}}$$, for w
for $$\dfrac{w}{3}, \dfrac{I}{2}=\dfrac{V}{\sqrt{R^2+(\dfrac{3}{wc})^2}}$$$$\dfrac{2}{\sqrt{R^2+\dfrac{9}{w^2C^2}}}=\dfrac{1}{\sqrt{R^2+\frac{1}{w^2C^2}}}$$$$4R^2+\dfrac{4}{w^2c^2}=R^2+\dfrac{9}{w^2c^2}$$
$$3R^2=\dfrac{5}{w^2c^2}$$
$$3R^2=5(x_c)^2$$ [at w]
$$\sqrt{\dfrac{3}{5}}=\dfrac{x_c}{R}$$