Solution:
Solution
given, mass(m)= 4 g
Volume(V) = 22.4 liters
Specific heat capacity of gas at constant volume ($${ C }_{ v }$$) = 5.0 J/K mol
Velocity of sound ($$v_{ sound }$$)=952 m/s
As we know that,
Velocity of sound, $$v_{ sound }=\sqrt { \dfrac { \gamma PV }{ m } } $$
$$\Rightarrow \gamma =\dfrac { m{ { v }_{ sound } }^{ 2 } }{ PV } $$ .......................equation(1)
Also,
$$\gamma =\dfrac { { C }_{ p } }{ C_{ v } } $$
So, equation (1) becomes,
$$\dfrac { { C }_{ p } }{ { C }_{ v } } =\dfrac { m{ { v }_{ sound } }^{ 2 } }{ PV } $$
$$\Rightarrow { C }_{ p }={ C }_{ v }\dfrac { m{ { v }_{ sound } }^{ 2 } }{ PV } $$
by substituting the values we get,
$$\Rightarrow { C }_{ p }=\dfrac { 5\times 4\times { 10 }^{ -3 }\times { 952 }^{ 2 } }{ { 10 }^{ 5 }\times 22.4\times { 10 }^{ -3 } } $$
$$\Rightarrow {C}_{p}$$=8.09 J/K mol
$$\Rightarrow {C}_{p}$$ $$\approx$$8.00 J/K mol